3k^2+12k+1=6

Simple and best practice solution for 3k^2+12k+1=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3k^2+12k+1=6 equation:


Simplifying
3k2 + 12k + 1 = 6

Reorder the terms:
1 + 12k + 3k2 = 6

Solving
1 + 12k + 3k2 = 6

Solving for variable 'k'.

Reorder the terms:
1 + -6 + 12k + 3k2 = 6 + -6

Combine like terms: 1 + -6 = -5
-5 + 12k + 3k2 = 6 + -6

Combine like terms: 6 + -6 = 0
-5 + 12k + 3k2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-1.666666667 + 4k + k2 = 0

Move the constant term to the right:

Add '1.666666667' to each side of the equation.
-1.666666667 + 4k + 1.666666667 + k2 = 0 + 1.666666667

Reorder the terms:
-1.666666667 + 1.666666667 + 4k + k2 = 0 + 1.666666667

Combine like terms: -1.666666667 + 1.666666667 = 0.000000000
0.000000000 + 4k + k2 = 0 + 1.666666667
4k + k2 = 0 + 1.666666667

Combine like terms: 0 + 1.666666667 = 1.666666667
4k + k2 = 1.666666667

The k term is 4k.  Take half its coefficient (2).
Square it (4) and add it to both sides.

Add '4' to each side of the equation.
4k + 4 + k2 = 1.666666667 + 4

Reorder the terms:
4 + 4k + k2 = 1.666666667 + 4

Combine like terms: 1.666666667 + 4 = 5.666666667
4 + 4k + k2 = 5.666666667

Factor a perfect square on the left side:
(k + 2)(k + 2) = 5.666666667

Calculate the square root of the right side: 2.380476143

Break this problem into two subproblems by setting 
(k + 2) equal to 2.380476143 and -2.380476143.

Subproblem 1

k + 2 = 2.380476143 Simplifying k + 2 = 2.380476143 Reorder the terms: 2 + k = 2.380476143 Solving 2 + k = 2.380476143 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-2' to each side of the equation. 2 + -2 + k = 2.380476143 + -2 Combine like terms: 2 + -2 = 0 0 + k = 2.380476143 + -2 k = 2.380476143 + -2 Combine like terms: 2.380476143 + -2 = 0.380476143 k = 0.380476143 Simplifying k = 0.380476143

Subproblem 2

k + 2 = -2.380476143 Simplifying k + 2 = -2.380476143 Reorder the terms: 2 + k = -2.380476143 Solving 2 + k = -2.380476143 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-2' to each side of the equation. 2 + -2 + k = -2.380476143 + -2 Combine like terms: 2 + -2 = 0 0 + k = -2.380476143 + -2 k = -2.380476143 + -2 Combine like terms: -2.380476143 + -2 = -4.380476143 k = -4.380476143 Simplifying k = -4.380476143

Solution

The solution to the problem is based on the solutions from the subproblems. k = {0.380476143, -4.380476143}

See similar equations:

| -(6-t)+(2t-6)= | | d+1.5=30 | | 8x-(3x+2)+x=6x+2.6 | | a-975=-22a-9 | | 8x-(3x+2)+x=6x+1.3 | | 0=50x^2-16x+2 | | -8c+31=c+328 | | 15d+3=d-599 | | x^2+18x+25=8 | | -4.75j-8.9-2.46j=9.125 | | 3n+16=4 | | -12.5x=44 | | a+74=-8a-7 | | 8x-(3x+2)+x=6x+7 | | 5M^2*N^3*MN^2*(4M-N)=0 | | f/4-8=(-7) | | 8x-(3x+2)+x=6x+6 | | -4.75j-8.9-2.46j=9.126 | | 8x-(3x+2)+x=6x+5 | | 18-2g=10 | | 11x-2(x-8)=9(x+1)+4 | | 8x-(3x+2)+x=6x+4 | | 104=8(1+2b) | | X(x+23)-10x+x^2= | | (4x-6)=0 | | w/3-14=(-12) | | 7s-8=-10s+1 | | 8x-(3x+2)+x=6x+3 | | 28=6+2(3n-1) | | 17z-16=18 | | 2x+16=x-25 | | 5w-14=31 |

Equations solver categories